Abstract

This chapter discusses a model that relies on the knowledge of the molecular electrostatic potential, which is derived from a molecular wavefunction by using the usual methods for calculating the mean expectation value of an operator. In its basic premises the model employs quantum mechanics, with only the approximations necessary in molecular quantal calculations. The model is also discussed regarding its relationships with the Hellmann–Feynman theorem. The electrostatic potential V itself is examined in order to show how the electrostatic potential reflects the characteristics of the electronic distribution of a molecule and then the reliability of V is discussed as a reactivity index. The shape of the electrostatic potential and its relationship to the electronic molecular structure is discussed with the aid of various examples. One of them includes the glycine tautomers and the corresponding anion example. The chapter also discusses the electrostatic molecular potential in terms of local group contributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.