Abstract
The bottleneck of electrochemical water splitting is the sluggish kinetics of oxygen evolution reaction (OER). Layered double hydroxides (LDHs) have been proposed as active and affordable electrocatalysts in OER. It has been reported that the activity of LDHs can be effectively tuned by doping of other metals. Despite previous experimental synthesis and improved catalytic performance, the in-depth OER mechanism on metal doped LDHs remains ambiguous. In the present work, transition metals (Cr, Mn and Co) doped NiFe LDHs were designed to investigate the doping effect in OER by both experimental analysis and density functional theory calculations. Based on experimental results, the intrinsic OER activity is Cr-NiFe LDHs > Co-NiFe LDHs > Mn-NiFe LDHs > NiFe LDHs, while the enhanced catalytic performance upon doping can be attributed to the interface effect, which results in the tuning of the binding energies of the intermediate states in OER.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.