Abstract
The development of advanced catalysts is of vital importance for chemical production, and vacancy engineering represents an effective approach to improve the overall catalytical activities by modulating their structural characters. Herein, a series of oxygen-vacancy-functionalized copper oxides were effectively prepared through a hydrothermal-oxidative tandem process. The optimized CuO-S30 catalyst shows an exceptionally-improved catalytical performance for the selective hydrogenation of 4-nitrophenol (4-NP) with good reusability. With the assistance of theoretical simulation, the exceptional activity can be attributed to the electronic modulation induced by oxygen vacancies in CuO-S30, which could not only facilitate the trapping of the reactants on the positively charged Cu sites, but also promote the electron transfer during the hydrogenation process. This study offers a facile and environmentally friendly strategy for electronic property modulation in metal oxides by oxygen vacancies construction, which can be further extended to other advanced catalysts with outstanding catalytic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.