Abstract

A theoretical study of isolated and doubly-clustered impurities is presented for the electronic excitations in a carbon nanotube lattice. Using a matrix operator formalism and a tight-binding model where the interactions between atoms take place via nearest-neighbor hopping, the properties of the excitations are deduced. A geometry consisting of long, single-walled carbon nanotubes is assumed with the defects introduced in the form of substitutional impurity atoms, giving rise to the localized electronic modes of the nanotube as well as the propagating modes of the pure (host) material. The impurities are assumed to be in a low concentration, having the form of either a single, isolated defect or a small cluster of two defects close together. A tridiagonal matrix technique is employed within a Green’s function formalism to obtain the properties of the discrete modes of the system, including their frequencies and localization. The numerical examples show a dependence on the nanotube diameters and on the relative spatial configurations of the impurities. The results contrast with the previous studies of line impurities since there is no translational symmetry along the longitudinal axis of the nanotubes in the present case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.