Abstract

AbstractThe synthesis of single‐atom catalysts and the control of the electronic properties of catalytic sites to arrive at superior catalysts is a major challenge in heterogeneous catalysis. A stable supported single‐atom silver catalyst with a controllable electronic state was obtained by anti‐Ostwald ripening. An electronic perturbation of the catalytic sites that is induced by a subtle change in the structure of the support has a strong influence on the intrinsic reactivity. The higher depletion of the 4d electronic state of the silver atoms causes stronger electronic metal–support interactions, which leads to easier reducibility and higher catalytic activity. These results may improve our understanding of the nature of electronic metal–support interactions and lead to structure–activity correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.