Abstract

The nature of impurity-dislocation interactions is one of the key questions governing the strength and plasticity of solid-solution materials. To investigate the influence of impurities on the mechanical properties of intermetallic NiAl, the electronic structure and energy of NiAl with a <100>{010} edge dislocation and transition-metal impurities was calculated using the real-space tight-binding linear muffin-tin orbital method. The localized electronic states, appearing in the core of the dislocation, are found to lead to strong impurity-dislocation interactions via two mechanisms: firstly, chemical locking, due to strong hybridization between impurity electronic states and dislocation localized states; secondly, electrostatic locking, due to long-range charge oscillations caused by the electron localization in the dislocation core. The results obtained explain qualitatively why the solid-solution hardening effect in NiAl correlates with the electronic structure of impurities rather than with size misfit, as expected according to traditional views.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.