Abstract

The full potential linear augmented plane wave method including Hubbard potential and spin-orbit coupling are performed to study the structural, electronic, magneto-optical and magnetic anisotropy properties of tetragonal BiFeO3. Using the exchange correlations potentials generalized gradient plus Hubbard parameter (GGA + U) approximations are used for the description of electron-electron interactions. We studied first the structural properties which present a tetragonal distortion results from the stereochemical 6s2 lone pair of Bi+2 and the Jahn-Teller (JT) distortion effect of Fe+3 and the value of c∕a = 1.28. The calculated gap is 2.0 eV at Ueff = 4 eV. The magnetic moment of Fe in phase is 3.65 μB. Kerr and ellipticity are calculated by using a spin-orbit coupling and Hubbard potential which present a high angles values −1.0° and 1.5° respectivly. In plane uniaxial and fourfold anisotropy constants are determined from the fit curves of DFT calculation. We observed a predominance of uniaxial anisotopy on the fourdfold anisotropy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call