Abstract

A new type of the single-molecule magnet [Mn 4O 3Cl 4(O 2CEt) 3(py) 3] forms dimers. Recent magnetic hysteresis measurements on this single-molecular magnet revealed interesting phenomena: an absence of quantum tunneling at zero magnetic field and tunneling before magnetic field reversal. This is attributed to a significant antiferromagnetic exchange interaction between different monomers. To investigate this system, we calculate the electronic structure, magnetic properties, intramolecular and intermolecular exchange interactions using density-functional theory within the generalized-gradient approximation. Our calculations agree with experiment. We find that the calculated threefold symmetric structure is vibrationally stable. We also calculate vibrational infrared absorption and Raman scattering intensities for the monomer which can be tested experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.