Abstract

The half-metallic ferromagnetic behavior of rare-earth nitride Gd0.95 TM0.05N (TM = Ti, V, Cr, Mn and Co), based on diluted magnetic semiconductors (DMSs), is investigated using the Korringa–Kohn–Rostoker (KKR) method combined with the coherent potential approximation (CPA) within a framework of density functional theory (DFT). The energy difference between the ferromagnetic and disorder local moment states has been evaluated. The exchange interactions obtained from first-principles calculations resulted in ferromagnetic states with Curie temperatures within the ambient conditions. Moreover, the optical absorption spectra obtained by ab initio calculations confirm the ferromagnetic stability based on the charge state of magnetic impurities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call