Abstract

The search for new materials is a very intense task in many technological areas. In 2015, a new variant of graphene was proposed, the pentagraphene, which was followed by the propose of a pentagonal boron nitride structure called penta-BN2. Based on these structures, we investigated the electronic, magnetic, and optical properties of penta-BN2 nanoribbons (p-BNNRs) considering four different kinds of edges, carefully closing the valence shells with H atoms to prevent dangling bonds. To achieve this goal, we used first-principles calculations in a density functional theory framework. Our findings showed that the p-BNNRs have a rich magneto-electronic behavior, varying from semiconductor to half-metal. We obtained that they are ferrimagnetic, having an intrinsic magnetism, which allow potential applications in spintronic or spinwaves. From an optical absorption point of view, they mainly absorb at ultraviolet region of the spectrum, especially at UV-B region, which could indicate a potential application as a UV filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call