Abstract

We propose an electronic quantum eraser in which the electrons are injected into a mesoscopic conductor at the quantum Hall regime. The conductor is composed of a two-path interferometer which is an electronic analogue of the optical Mach-Zehnder interferometer, and a quantum point contact detector capacitively coupled to the interferometer. While the interference of the output current at the interferometer is shown to be suppressed by the which-path information, we show that the which-path information is erased by the zero-frequency cross correlation measurement between the interferometer and the detector output leads. We also investigate a modified setup in which the detector is replaced by a two-path interferometer.We show that the path distinguishability and the visibility of the joint detection can be controlled in a continuous manner, and satisfy a complementarity relation for the entangled electrons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.