Abstract

A brief review is given of the current understanding of the electronic structure, transport properties and the nature of the electronic states in disordered systems. A simple explanation for the observed exponential behaviour in the density of states (Urbach tails) based on short-range Gaussian fluctuations is presented. The theory of Anderson localization in a disordered system is reviewed. Basic concepts, and the physics underlying the effects of weak localization, are discussed. The scaling as well as the self-consistent theory of localization are briefly reviewed. It is then argued that the problem of localization in a random potential within the so-called ladder approximation is formally equivalent to the problem of finding a bound state in a shallow potential well. Therefore all states are exponentially localized in d=1 and d=2. The fractal nature of the states is also discussed. Scaling properties in highly anisotropic systems are also discussed. A brief presentation of the recently observed metal-to-insulator transition in dequals;2 is given and, finally, a few remarks about interaction effects in disordered systems are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call