Abstract

The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge1. The added charge is concentrated into domain walls across which a π phase shift in the spin correlations of the host material is induced. In two dimensions, these domain walls are ‘stripes’ which can be insulating2,3 or conducting4,5,6 — that is, metallic ‘rivers’ with their own low-energy degrees of freedom. However, in arrays of one-dimensional metals, which occur in materials such as organic conductors7, interactions between stripes typically drive a transition to an insulating ordered charge-density-wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared tothe CDW coupling between stripes. As a consequence, there should exist electronic quantum liquid-crystal phases, which constitute new states of matter, and which can be either high-temperature superconductors or two-dimensional anisotropic ‘metallic’ non-Fermi liquids. Neutron scattering and other experiments in the copper oxide superconductor La1.6−xNd0.4SrxCuO4 already provide evidence for the existence of these phases in at least one class of materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call