Abstract

I discuss the electronic liquid crystal (ELC) phases in correlated electronic systems, what these phases are and in what context they arise. I will go over the strongest experimental evidence for these phases in a variety of systems: the two-dimensional electron gas (2DEG) in magnetic fields, the bilayer material \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\) (also in magnetic fields), and a set of phenomena in the cuprate superconductors (and more recently in the pnictide materials) that can be most simply understood in terms of ELC phases. Finally we will go over the theory of these phases, focusing on effective field theory descriptions and some of the known mechanisms that may give rise to these phases in specific models.KeywordsQuantum Phase TransitionCharge Density WaveNematic PhaseStripe PhaseNematic OrderThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.