Abstract
Electronic effects induced by diphosphine bidentate ligands on the regioselectivity of the rhodium-catalyzed hydroformylation of propene were investigated using density functional theory based calculations (B3LYP). To this end, the key hydride migration step was evaluated for HRh(propene)(CO)L2 (L2 = PF3, PF3; PH3, PH3; PMe3, PMe3; PH3, PF3; PH3, PMe3) incorporating either two identical or two electronically distinct phosphorus moieties. The phosphorus moieties span a wide range of ligand basicities. While the electronic properties of the ligands do not influence the regioselectivity of the hydride migration reaction directly, they do govern the amount of back-donation from the metal to the alkene substrate. As a result, important differences in transition-state geometries are obtained for different ligand systems. For electron-withdrawing ligands low activation energies and trigonal-bipyramidal transition-state geometries are observed. Increasing the basicity of the diphosphine ligand leads to higher act...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.