Abstract

Tetracationic water-soluble porphyrin (H(2)P(4+)) has been immobilized by pi-pi stacking interactions onto the skeleton of carbon nanohorns (CNH), without disrupting their pi-electronic network. The stable aqueous solution of the CNH-H(2)P(4+) nanoensemble was examined by both electron microscopy and spectroscopic techniques. The efficient fluorescence quenching of the H(2)P(4+) moiety in the CNH-H(2)P(4+) nanoensemble was probed by steady-state as well as time-resolved fluorescence emission spectroscopy, suggesting charge separation from the photoexcited H(2)P(4+) to CNH. In the presence of methyl viologen dication (MV(2+)) and a hole trap, accumulation of the reduced species of methyl viologen was observed by the photoillumination of CNH-H(2)P(4+), suggesting that the electron migration from the initially formed charge-separated state takes place. Transient absorption spectroscopy gave further insights on the transient species such as the charge-separated state (CNH(*-))-(H(2)P(4+))(*+), which was consumed in the presence of MV(2+) and hole shifter, leaving the reduced methyl viologen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call