Abstract

Engineering the electronic properties of heterogeneous photocatalysts with charge transfer regulated is an effective strategy to boost their CO2 reduction activity. Here, we drew inspiration from the strong metal-support interaction effect, and fabricated ZnIn2S4 supported-Cu sub-nanometric clusters photocatalyst. Within this catalyst, the formed CuS bond would redistribute interfacial charge, resulting in diverse chemical states of Cu atoms and the establishment of Ohmic contact between ZIS and Cu. The built-in electric field of such Ohmic contact benefited the migration of photoexcited electrons from ZIS to Cu. Further mechanistic studies unveiled the crucial role of positively charged Cu atom near the interface in facilitating H2O dissociation, and its adjacent Cu atom at the top-surface adopting a distinct chemical state could activate linear CO2 molecule into a bent configuration. These features substantially lowered energy barriers for CO2 adsorption and subsequent *COOH formation, and Cu-ZIS, accordingly, exhibited a remarkable CO production rate of 60.2 μmol g-1h−1, approximately 20.8-fold enhancement compared to ZIS counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.