Abstract

The magnetic susceptibility, NMR spectra, nuclear spin-lattice relaxation rate (T 1 −1)α and the echo-decay rate (T 2 −1) of 63Cu were measured for the electron-doped infinite-layer superconductor Sr0.93La0.07CuO2/T c onset = 42.4 K). The results obtained revealed a clear tendency toward frustrated phase separation in this nominally underdoped high-T c material. Above T c the 63Cu Knight shift is found to decrease upon cooling giving an evidence for a pseudogap-like decrease of the spin susceptibility. It is shown that unusual anisotropy of the 63Cu Knight shift in the electron-doped CuO2 layer can be understood as a “compensation effect” between the isotropic hyperfine coupling, mediated by the 4s Fermi-contact and 3d core-polarization exchange interactions, and the anisotropic on-site spin-dipolar hyperfine interaction of the Cu nuclei with the itinerant carriers, whose states near the Fermi energy have a sizeable admixture of Cu(4pz) and/or Cu(3dz 2) orbitals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call