Abstract
We developed a set of equations to calculate the electronic Green's functions in a T-shaped multi-quantum dot system using the equation of motion method. We model the system using a generalized Anderson Hamiltonian which accounts for finite intradot on-site Coulomb interaction in all component dots as well as for the interdot electron tunneling between adjacent quantum dots. Our results are obtained within and beyond the Hartree–Fock approximation and provide a path to evaluate all the electronic correlations in the multi-quantum dot system in the Coulomb blockade regime. Both approximations provide information on the physical effects related to the finite intradot on-site Coulomb interaction. As a particular example for our generalized results, we considered the simplest T-shaped system consisting of two dots and proved that our approximation introduces important corrections in the detector and side dots Green's functions, and implicitly in the evaluation of the system's transport properties. The multi-quantum dot T-shaped setup may be of interest for the practical realization of qubit states in quantum dot systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.