Abstract

We review existing manifestations and prospects for ferroelectricity in electronically and optically active carbon-based materials. The focus point is the proposal for the electronic ferroelectricity in conjugated polymers from the family of substituted polyacetylenes. The attractive feature of synthetic organic ferroelectrics is a very high polarizability coming from redistribution of the electronic density, rather than from conventional displacements of ions. Next fortunate peculiarity is the symmetry determined predictable design of perspective materials. The macroscopic electric polarization follows ultimately from combination of two types of a microscopic symmetry breaking which are ubiquitous to qusi-1D electronic systems. The state supports anomalous quasi-particles—microscopic solitons, carrying non-integer electric charges, which here play the role of nano-scale nucleus of ferroelectric domain walls. Their spectroscopic features in optics can interfere with low-frequency ferroelectric repolarization providing new accesses and applications. In addition to already existing electronic ferroelectricity in organic crystals and donor–acceptor chains, we point to a class of conducting polymers and may be also to nano-ribbons of the graphene where such a state can be found. These proposals may lead to potential applications in modern intensive searches of carbon ferroelectrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call