Abstract

A theoretical study of the mechanism of decarboxylation of beta-keto acids is described. A cyclic transition structure was found with essentially complete proton transfer from the carboxylic acid to the beta-carbonyl group. The activation barrier for decarboxylation of formylacetic acid is predicted to be 28.6 kcal/mol (MP4SDTQ/6-31G//MP2/6-31G) while loss of CO(2) from its anion exhibits a barrier of only 20.6 kcal/mol (MP4SDTQ/6-31+G//MP2/6-31+G). Barrier heights of decarboxylation of malonic acid and alpha,alpha-dimethylacetoacetic acid are predicted to be 33.2 and 26.7 kcal/mol, respectively. Model enzyme studies using a thio methyl ester of malonate anion suggests that the role of malonyl-CoA is to afford a polarizable sulfur atom to stabilize the developing enolate anion in the transition structure for decarboxylation. Adjacent positively charged ammonium ions are also observed to stabilize the loss of CO(2) from a carboxylate anion by through-bond Coulombic stabilization of the transition structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.