Abstract

Ground-state two-particle reduced density matrices (2-RDMs) are used to calculate excited-state energy spectra. Solving the Schrodinger equation for excited states dominated by single excitations from the ground-state wavefunction requires the ground-state 2- and 3-RDMs. The excited states, however, can be obtained without a knowledge of the ground-state 3-RDM by two methods: (i) cumulant expansion methods which build the 3-RDM from the 2-RDM, and (ii) double commutator methods which eliminate the 3-RDM. Previous work [Mazziotti, Phys. Rev. A 68, 052501 (2003)] examined the accuracy of excited states extracted from ground-state 2-RDMs, which were calculated by full configuration interaction or the variational 2-RDM method. In this work we employ (i) advances in semidefinite programming to treat the excited states of water and hydrogen fluoride and chains of hydrogen atoms, and (ii) the addition of partial three-particle N-representability conditions to compute more accurate ground-state 2-RDMs. With the hydrogen chains we examine the metal-to-insulator transition as measured by the band gap (the difference between the ground-state and the first excited-state energies), which is difficult for excited-state methods to capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call