Abstract

The electronic structure of doped Mn in (Ga,Mn)As is studied by resonant inelastic x-ray scattering. From configuration-interaction cluster-model calculations, the line shapes of the Mn L3 resonant inelastic x-ray scattering spectra can be explained by d-d excitations from the Mn ground state dominated by charge-transferred states, in which hole carriers are bound to the Mn impurities, rather than a pure acceptor Mn2+ ground state. Unlike archetypical d-d excitation, the peak widths are broader than the experimental energy resolution. We attribute the broadening to a finite lifetime of the d-d excitations, which decay rapidly to electron-hole pairs in the host valence and conduction bands through the hybridization of the Mn 3d orbital with the ligand band.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call