Abstract
In this work a generalized self-consistent field theory was applied to investigate the elementary excitations of two-dimensional electron gas formed from narrow quantum wells via resonant intersubband Raman scattering. The developed model considers the existence of equally coupled and degenerated excitations of the electron gas and allows to observe that in extreme resonance regime the plasma oscillations splits into two contributions: a set of renormalized collective excitations (plasmons) and unrenormalized electronic transitions (single-particle excitations). Our results show that the asymmetries which appear in the Raman profile of doped narrow quantum wells can be interpreted as the entrance or exit of resonance of collective modes overlapped with single-particle transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.