Abstract
The absorption, photoluminescence, and photoluminescence excitation spectra of CdS nanocrystals formed by the Langmuir–Blodgett method are explored. Features of the absorption and photoluminescence excitation spectra defined by optical transitions in the matrix and nanocrystals are identified. The efficiency of electronic excitation transfer from an organic matrix to nanocrystals is studied. It is shown that charge carriers efficiently transfer from the matrix to electron and hole size-quantization levels in nanocrystals and to acceptor defect levels in the band gap of nanocrystals. A large Stokes shift defined by fine exciton structure (bright and dark excitons) is observed. The shift is in the range 140–220 meV for nanocrystals 2.4 and 2.0 nm in radius.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.