Abstract

AbstractA new mechanism of anionic polymerization of butadiene is proposed. In the elementary chemical act, the “living” polymer–monomer complex is excited into the low‐lying triplet state. This state has the character of charge (electron) and cation (Li+ or Na+) transfer from the terminal unit of the active center to the monomer molecule. In the framework of this concept, the probability of chemical bond formation is determined by spin density on radical centers of reagent molecules. Semiempirical and ab initio 6‐31G** quantum‐chemical calculations showed stable interaction between components of the complex in the ground electronic state (9–11 kcal/mol) and low energy levels of triplet excited states (<14 kcal/mol). This new approach is shown to be useful in the analysis of polymerization kinetics and the microstructure of polybutadiene depending on the cation type and the ion pair state. The mechanism of cis‐trans isomerization in the terminal unit of the living polymer consists in concerted rotation about the CβCγ bond and the migration of Li between Cα and Cγ atoms. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call