Abstract

A 1 : 1 metallic charge-transfer salt is obtained by cosublimation of (Z,E)-(SMe)2Me2TTF and TCNQ. X-ray diffraction studies confirm the formation of segregated stacks comprising donor and acceptor molecules in [(E)-(SMe)2Me2TTF](TCNQ). The crystal packing features lateral SS interactions between TTF stacks, which is in sharp contrast to that in (TTF)(TCNQ). Structural analysis and theoretical studies afford a partial charge-transfer (ρ ≈ 0.52), leading to a system with the electronic structure close to quarter-filled. Resistivity measurements reveal that this material behaves as a metal down to 56 K and 22 K at 1 bar and 14.9 kbar, respectively. The thermopower is negative in the metallic regime, indicating the dominant role of the acceptor stacks for the observed conducting behavior. Analysis of single-crystal EPR spectra shows the remaining spin susceptibility at 4.3 K, suggesting the importance of the Hubbard U correction. These results highlight the judicious engineering of electronic and geometrical effects on the TTF core; the combined use of methyl and thiomethyl groups has decreased the TCNQ bandwidth while maintaining the segregated stacks, converting the metal to insulator (M-I) transition to more 4kF like. In addition, the enhanced SS contacts between the TTF stacks lead to more rapidly decreasing M-I transition temperature under various pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.