Abstract

The structure of H2O+D2O solutions was studied by correlation spectroscopy of scattered light. The correlation function and size of scatterers were both found to depend nonmonotonically on the D2O concentration in the H2O+D2O mixture. Processes of transfer of electronic excitation energy between dye molecules of different types in H2O+D2O solutions were studied. The efficiency of these processes was found to depend extremally on the concentration of the components of the solution. A fractal distribution of the interacting dye molecules is ascertained from the experimental data. The dependence of the fractal dimensionality of the dye solutions on the D2O concentration in the D2O+H2O mixture is determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.