Abstract

We create electrostatically induced quantum dots by thermal diffusion of interstitial Mn out of a p-type (GaMn)As layer into the vicinity of a GaAs quantum well. This leads to the formation of deep, approximately circular and strongly confined dot-like potential minima in a large mesa diode structure. The minima are formed without need for advanced lithography or electrostatic gating. Using fields of up to 30 T, magnetotunnelling spectroscopy of an individual dot reveals the symmetry of the electronic eigenfunctions and, for the approximately circular dots, a rich spectrum of Fock-Darwin-like states with an orbital angular momentum component |lz| ranging from 0 up to 11. We find that a small fraction of the dots has elongated potential minima, giving rise to quenching of the orbital angular momentum of the electronic eigenstates. By developing a model to describe the diffusion of the Mn interstitial ions, we determine the electrostatic potential landscape in the quantum well and hence the distribution of dot shapes and sizes. This is in a good agreement with our experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.