Abstract

Lanthanide luminescence fascinates with a complicated electronic structure and "forbidden" transitions. By studying the photophysics of lanthanide(III) solvates, a close to ideal average coordination geometry can be used to map both electronic energy levels and transition probabilities. Some lanthanide(III) ions are simpler to study than others, and samarium(III) belongs to the more difficult ones. The 4f5 system has numerous absorption and emission lines in the visible and infrared parts of the spectrum and in this work, the energy levels giving rise to these transitions were mapped, the transition probability between them was calculated, and it was shown that the electronic structures of the samarium(III) solvates in DMSO, MeOH, and water are different.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.