Abstract

Motivated by experimental reports of higher-than-bulk melting temperatures in small gallium clusters, we perform first-principles molecular dynamics simulations of Ga(20) and Ga(20)(+) using parallel tempering in the microcanonical ensemble. The respective specific heat (C(V)) curves, obtained using the multiple histogram method, exhibit a broad peak centered at approximately 740 and 610 K--well above the melting temperature of bulk gallium (303 K) and in reasonable agreement with experimental data for Ga(20)(+). Assessment of atomic mobility confirms the transition from solid-like to liquid-like states near the C(V) peak temperature. Parallel tempering molecular dynamics simulations yield low-energy isomers that are ~0.1 eV lower in energy than previously reported ground state structures, indicative of an energy landscape with multiple, competing low-energy morphologies. Electronic structure analysis shows no evidence of covalent bonding, yet both the neutral and charged clusters exhibit greater-than-bulk melting temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.