Abstract
Iron (Fe)-based alloys, which have been widely used as structural materials in nuclear reactors, can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation, thus, the problems associated with the safe operation of nuclear reactors have been put forward naturally. In this work, a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process in α-Fe. Specifically, the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe. The simulation results reveal that both electronic stopping (ES) and electron–phonon coupling (EPC) can contribute to the decrease of the number of defects in the thermal spike phase. The application of ES reduces the number of residual defects after the cascade evolution, whereas EPC has a reverse effect. The introduction of electronic effects promotes the formation of the dispersive subcascade: ES significantly changes the geometry of the damaged region in the thermal spike phase, whereas EPC mainly reduces the extent of the damaged region. Furthermore, the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.