Abstract
AbstractThe electronic effects of the 5‐ and 6‐membered heterocyclic rings on the CNN unit of five different hydrazone derivatives of pyridine‐2‐, ‐3‐ and ‐4‐carbaldehydes, pyrrole‐2‐carbaldehyde, furan‐2‐ and ‐3‐carbaldehydes and thiophene‐2‐ and ‐3‐carbaldehydes have been studied with the aid of 13C and 15N NMR measurements together with the natural bond orbital (NBO) analysis. As model compounds are used the corresponding substituted benzaldehyde derivatives. The polarization of the CN unit of the hydrazone functionality of the heteroaryl derivatives occurs in an analogous manner with that of phenyl derivatives. The electron‐withdrawing heteroaryl groups destabilize and the electron‐donating groups stabilize the positive charge development at the CN carbon while the effect on the negative charge development is opposite. The 15N NMR chemical shift of the CN and CNN nitrogens and the NBO charges at CNN unit can be correlated with the replacement substituent constants σ of the heteroaryl groups. 13C NMR shifts of the CN carbon of N,N‐dialkylhydrazones of the heteroarenecarbaldehydes can be correlated with a dual parameter equation possessing the polar substituent constant σ* of the heteroaryl group and the electronegativity of the heteroatom as variables. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.