Abstract
We proposed a new strategy to maximize the density of acidic groups by modulating the electronic effects of the substituents for high-performance proton conductors. The conductivity of the sulfonated 1-MeL40-S with methyl group corresponds to 2.29×10-1 S cm-1 at 80 °C and 90 % relative humidity, remarkably an 22100-fold enhancement over the nonsulfonated 1-MeL40. 1-MeL40-S maintains long-term conductivity for one month. We confirm that this synthetic method is generalized to the extended version POPs, 2-MeL40-S and 3-MeL40-S. In particular, the conductivities of the POPs compete with those of top-level porous organic conductors. Moreover, the activation energy of the POPs is lower than that of the top-performing materials. This study demonstrates that systematic alteration of the electronic effects of substituents is a useful route to improve the conductivity and long-term durability of proton-conducting materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.