Abstract

Metastable states appear in many areas of physics as a result of symmetry-breaking phase transitions. An important challenge is to understand the microscopic mechanisms which lead to the formation of the energy barrier separating a metastable state from the ground state. In this paper, we describe an experimental example of the hidden metastable domain state in 1T-TaS2, created by photoexcitation or carrier injection. The system is an example of a charge density wave superlattice in the Wigner crystal limit displaying discommensurations and domain formation when additional charge is injected either through contacts or by photoexcitation. The domain walls and their crossings in particular display interesting, topologically entangled structures, which have a crucial role in the metastability of the system. We model the properties of experimentally observed thermally activated dynamics of topologically protected defects—dislocations—whose annihilation dynamics can be observed experimentally by scanning tunnelling microscopy as emergent phenomena described by a doped Wigner crystal. The different dynamics of trivial and non-trivial topological defects are quite striking. Trivial defects appear to annihilate quite rapidly at low temperatures on the timescale of the experiments, while non-trivial defects annihilate rarely, if at all.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.