Abstract

ABSTRACTCurrently, systems for the detection of nucleic acid sequences, known as DNA-chips, are getting lots of attention. Such systems usually involve either an enzymatic or chemical labelling reaction as part of the detection process. The next generation of DNA-chips aims at a labelfree, fully electronic readout system. Several new approaches to signal generation that avoid a labelling step have been developed in recent years. Besides other surface sensitive measurements the possibility of electrochemical impedance and field-effect measurements for the detection of biomolecules have been discussed. The fully electronic detection of charged biomolecules based on the field-effect principle offers a labelfree method, which combines the unique sensitivity and selectivity of biomolecular recognition reactions with an electronic chip-based readout. In this approach one type of molecules is fixed at a surface and the biomolecular reaction with complementary molecules is detected by change in the drain-source current of the transistor. This change can occur by a change of the interface capacitance of the transistor gate or by change of the surface potential during adsorption of the molecules. At the moment a complete theoretical description of the detection principle is still under discussion. However, the fully electronic readout of biomolecular reactions offers a unique principle for the construction of many different sensors for bioassays. We are working on an approach to detect the hybridization of DNA sequences using electrolyte-oxide-semiconductor field-effect transistor (EOSFET) arrays. This method allows direct and in situ detection of specific DNA sequences without any labelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.