Abstract
Following innervalence ionization of a cluster, the system can relax by electron emission, a phenomenon called intermolecular Coulombic decay. This process is characterized by an efficient energy transfer mechanism between neighboring monomers in the cluster. A theoretical description within the framework of Wigner-Weisskopf theory is developed, thus enabling a detailed analysis of the decay process. The main result of the formal treatment, a simple, approximate expression for the electronic decay width of an innervalence hole state, is applied to investigate the effect of cluster size. On the basis of extensive ab initio calculations, pronounced size effects are found in the concrete example of neon clusters. The decay lifetime decreases in a monotonic fashion from hundred femtoseconds in ${\mathrm{Ne}}_{2}$ down to less than ten femtoseconds in ${\mathrm{Ne}}_{13}.$ Suggestions are made how to facilitate the experimental observation of intermolecular Coulombic decay in clusters and condensed matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.