Abstract

The reaction of triplet fusion, also named triplet-triplet annihilation, has attracted a lot of research interests because of its wide applications in photocatalytic, solar cells, and bioimaging. As for the singlet oxygen photosensitization, the reactive singlet oxygen species are generated through the energy transfers from photosensitizer (PS) to ground triplet oxygen molecule. In this work, we computed the electronic coupling for singlet oxygen photosensitization using the nonadiabatic coupling from the quantum chemical calculation. Then we utilized the molecular orbital (MO) overlaps to approximate it, where the MOs were computed from isolated single molecules. As demonstrated with quantitative results, this approach well describes the distribution of the coupling strength as the function of the intermolecular distance between the sensitizer and O2, providing us a simple but effective way to predict the coupling of triplet fusion reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.