Abstract

Electronic coupling is a key parameter that determines the rate of electron transfer reactions and electrical conductivity of molecular wires. To examine the performance of a two-state approach based on the orthogonal transformation of adiabatic states to diabatic states, we compare the effective donor-acceptor coupling V(DA) computed with three different approaches in model donor-bridge-acceptor (D-B-A) systems. It is found that V(DA) derived with the two-state method accounts properly for both the direct and superexchange interactions. The approach becomes, however, less accurate with the increasing energy difference of the donor and acceptor states. We suggest a simple diagnostic to identify the situation when the estimated coupling might be inaccurate and consider how to improve the performance of the two-state scheme in such a case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.