Abstract

A series of three Mo2 dimers bridged by a meta-phenylene group has been studied in terms of electronic coupling (EC) and electron transfer (ET) in comparison with the para isomers. Optical analyses on the mixed-valence complexes indicate that by replacing a para-phenylene bridge with a meta one, the EC between the two Mo2 centers is dramatically weakened; consequently, the ET rates (ket ) are lowered by two to three orders of magnitude. In the para series, the EC parameters (Hab ) and ET rates (ket ) are greatly affected by O/S atomic alternation of the bridging ligand. However, for the meta analogues, similar EC and ET parameters are obtained, that is, Hab =300-400 cm-1 and ket ≈109 s-1 . These results suggest that through-σ-bond and/or through-space coupling channels become operative as the π conjugation is disabled. DFT calculations reveal that destructive quantum interference features seen for the meta series arise from the cancellation of two π-conjugated coupling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call