Abstract

Spontaneous symmetry-breaking is common in chemical and physical systems. Here, we show that by adding an electron to the C7v PbB8 cluster, which consists of a planar B8 disk with the Pb atom situated along the C7 axis, the Pb atom spontaneously moves to the off-axis position in the PbB8- anion. Photoelectron spectroscopy of PbB8- reveals a broad ground-state transition and a large energy gap, suggesting a highly stable closed-shell PbB8 borozene complex and a significant geometry change upon electron detachment. Quantum chemistry calculations indicate that the lowest unoccupied molecular orbital of the C7v PbB8 cluster is a degenerate π orbital mainly consisting of the Pb 6px and 6py atomic orbitals. Occupation of one of the 6p orbitals spontaneously break the C7v symmetry in the anion due to the Jahn-Teller effect. The large amplitude of the position change of Pb in PbB8- relative to PbB8 is surprising owing to bonding interactions between the Pb 6p orbital with the π orbital of the B8 borozene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.