Abstract
Electronic polarizability is an important factor in molecular interactions. In the conventional force fields such as AMBER or CHARMM, however, there is inconsistency in how the effect of electronic dielectric screening of Coulombic interactions, inherent for the condensed phase media, is treated. Namely, the screening appears to be accounted for via effective charges only for neutral moieties, whereas the charged residues are treated as if they were in vacuum. As a result, the electrostatic interactions between ionized groups are exaggerated in molecular simulations by the factor of about 2. The discussed here MDEC (Molecular Dynamics in Electronic Continuum) model provides a theoretical framework for modification of the standard non-polarizable force fields to make them consistent with the idea of uniform electronic screening of partial atomic charges. The present theory states that the charges of ionized groups and ions should be scaled; i.e. reduced by a factor of about 0.7. In several examples, including the interaction between Na (+) ions, which is of interest for ion-channel simulations, and the dynamics of an important salt-bride in Cytochrome c Oxidase, we compared the standard non-polarizable MD simulations with MDEC simulations, and demonstrated that MDEC charge scaling procedure results in more accurate interactions. The inclusion of electronic screening for charged moieties is shown to result in significant changes in protein dynamics and can give rise to new qualitative results compared with the traditional non-polarizable force fields simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.