Abstract

We analyze some procedures to introduce the effect of confining the electrons of the hydrogen atoms in cavitation spheres like those used in the self‐consistent reaction field models for studying the solvent influence on molecular properties [as polarizable continuum model (PCM), or conductor screening model (COSMO)]. We have found that the boundary conditions to be applied have an important effect on the system energy that by no means should be neglected in this type of calculations. We have found as well that “‐nG” expansion technique could be applicable in this kind of calculations (even at the very simple “‐3G” level) and lead us to a relatively simple form of applying the theory. Moreover, we have found a way to define the cavitation radius of PCM calculations, by minimizing the system energy with respect to this parameter, which could be a more satisfactory procedure—at least from a theoretical point of view—than the use of empirical values characteristic of most of the PCM or COSMO standard calculations. © 2013 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.