Abstract
Diatomic UO has more than 48 bound states within 10000 cm-1 of the ground state. This electronic state congestion has been attributed to interleaved states from the electronic configurations U2+(5f37s)O2- and U2+(5f27s2)O2-, respectively. Ligand field theory predicts that each electronic configuration will exhibit states with distinguishable, characteristic vibrational and rotational constants. However, vibronic state mixing modifies the observed vibration-rotation constants, leading to uncertainty in the configurational assignments. The permanent electric dipole moment (μe) of an electronic state should also manifest a value that is characteristic of the parent electronic configuration. μe and other electrostatic and magnetostatic properties should be less influenced by the vibronic state mixing, providing more robust indicators for configurational assignments. In the present study, we have measured the μe values for four electronic states of UO. The results clearly demonstrate that the ground state (X(1)4) and the first electronically excited state ((2)4) are derived from the U2+(5f37s)O2- and U2+(5f27s2)O2- configurations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.