Abstract

We report the first electronic compressibility measurements of magic-angle twisted bilayer graphene. The evolution of the compressibility with carrier density offers insights into the interaction-driven ground state that have not been accessible in prior transport and tunneling studies. From capacitance measurements, we determine the chemical potential as a function of carrier density and find the widths of the energy gaps at fractional filling of the moiré lattice. In the electron-doped regime, we observe unexpectedly large gaps at quarter- and half-filling and strong electron-hole asymmetry. Moreover, we measure a ∼35 meV minibandwidth that is much wider than most theoretical estimates. Finally, we explore the field dependence up to the quantum Hall regime and observe significant differences from transport measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call