Abstract
Smart and e-textiles have nowadays an important increasing place in the garment industry. The rise of embedded telecommunications, especially smartphones in our pocket, enables us to provide a power source and a wireless link for smart textiles. The main issue is to develop garments able to receive power from smartphones and communicate with them without flexibility and comfort constraints bound to embedded solid-state electronic components. Consequently, this article aims to develop a fully textile NFC combiner to transfer data and power between a smartphone and sensors without any electronic components. It precisely describes textile NFC multiple combiners composed of textile NFC antennas linked by two-wire transmission lines. Also, theoretical analysis, simulations, and experiments have been conducted to adapt the resonant frequency of such structures to the NFC technology (13.56 MHz). Finally, our article generalizes textile NFC combiner resonant frequency equations for multiple combiners with any number of antennas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.