Abstract

Reactions of polyhydrides OsH6(PiPr3)2 (1) and IrH5(PiPr3)2 (2) with rollover cyclometalated hydride complexes have been investigated in order to explore the influence of a metal center on the MHn unit of the other in mixed valence binuclear polyhydrides. Hexahydride 1 activates an ortho-CH bond of the heterocyclic moiety of the trihydride metal–ligand compounds OsH3{κ2-C,N-[C5RH2N-py]}(PiPr3)2 (R = H (3), Me (4), Ph (5)). Reactions of 3 and 4 lead to the hexahydrides (PiPr3)2H3Os{μ-[κ2-C,N-[C5RH2N-C5H3N]-N,C-κ2]}OsH3(PiPr3)2 (R = H (6), Me (7)), whereas 5 gives the pentahydride (PiPr3)2H3Os{μ-[κ2-C,N-[C5H3N-C5(C6H4)H2N]-C,N,C-κ3]}OsH2(PiPr3)2 (8). Pentahydride 2 promotes C—H bond activation of 3 and the iridium-dihydride IrH2{κ2-C,N-[C5H3N-py]}(PiPr3)2 (9) to afford the heterobinuclear pentahydride (PiPr3)2H3Os{μ-[κ2-C,N-[C5H3N-C5H3N]-N,C-κ2]}IrH2(PiPr3)2 (10) and the homobinuclear tetrahydride (PiPr3)2H2Ir{μ-[κ2-C,N-[C5H3N-C5H3N]-N,C-κ2]}IrH2(PiPr3)2 (11), respectively. Complexes 6–8 and 11 display HOMO delocalization throughout the metal–heterocycle-metal skeleton. Their sequential oxidation generates mono- and diradicals, which exhibit intervalence charge transfer transitions. This notable ability allows the tuning of the strength of the hydrogen–hydrogen and metal–hydrogen interactions within the MHn units.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.