Abstract

Two photon photoemission was used to investigate the interfacial charge transfer for size-selected Mo(x)S(y) (x/y: 2/6, 4/6, 6/8, 7/10) clusters deposited on an ultrathin alumina film prepared on a NiAl(110) surface. The local work function of the surface increases with increasing cluster coverage, which is unexpected for charge transfer resulting from the formation of Mo-O bonds between the clusters and the alumina surface. By analogy with Au atoms and clusters on metal-supported ultrathin oxide films, we invoke electron tunneling from the NiAl substrate to explain the charge transfer to the Mo(x)S(y) clusters. Electron tunneling is favored by the large electron affinities of the Mo(x)S(y) clusters and the relatively low work function induced by the presence of the alumina film. The interfacial dipole moments derived from coverage-dependent measurements are cluster dependent and reflect differences in Mo(x)S(y) cluster structure and surface bonding. These results extend previous observations of electronic charging to non-metallic clusters, specifically, metal sulfides, and suggest a novel way to modify the electronic structure and reactivity of nanocatalysts for heterogeneous chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.