Abstract
We report a systematic study of charge transport in a range of low-molar-mass and extended (having at least six aromatic rings) nematic liquid crystals, some of which are reactive mesogens, with a high degree of shape anisotropy, i.e., the length-to-width (aspect) ratio is exceptionally high. We demonstrate that the hole mobility is independent of the macroscopic, but not microscopic, ordering of the nematic and isotropic phases of these nematic liquid crystals with a long, rigid, and extended aromatic molecular core, because no discontinuity is observed at the transition between these phases. A room-temperature mobility of up to 1.0 × 10-3 cm2 V-1 s-1 is obtained in the nematic phase, which is attributed to the short intermolecular distances between the highly polarizable but rigid long aromatic cores. We show that the intermolecular separation can be easily fine-tuned by changing the lateral and terminal aliphatic groups of these nematic liquid crystals. Hence, the charge mobility can be varied by up to 2 orders of magnitude without altering the core structure of the molecules, and this chemical fine control could be used to limit hole transport and so provide better charge balance in organic light-emitting diodes. X-ray diffraction is used to obtain the intermolecular separation and shows local lamellar order in the nematic phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.