Abstract

The efficient and low-cost way for gene mutation detection and identification are conducive for the detection of disease. Here, we report the electronic characteristics of the gene of breast cancer 1 in four common mutation types: duplication, single nucleotide variant, deletion, and indel. The electronic characteristics are investigated by the combination of density functional theory and non-equilibrium Green's function formulation with decoherence. The magnitude of conductance of these DNA molecules and mutational changes are found to be detectable experimentally. In this study, we also find the significant mutation type dependent on the change of conductance. Hence these mutations are expected to be identifiable. We find deletion type mutation shows the largest change in relative conductance (~97%), whereas the indel mutation shows the smallest change in relative conductance (~27%). Therefore, this work presents a possibility of electronic detection and identification of mutations in DNA, which could be an efficient method as compared to the conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.